THE ROLE OF ARTIFICIAL INTELLIGENCE IN NETWORKING- A REVIEW
Keywords:
Artificial Intelligence , software defined networking , network function virtualization, machine learningAbstract
The growing complexity of digital infrastructures, fueled by the rise of IoT devices, cloud computing, and advanced communication systems, creates considerable challenges for managing networks. Traditional, manual approaches are no longer adequate to meet the evolving demands of modern networks. This paper explores how artificial intelligence (AI) is transforming network engineering, shifting from rule-based, manual systems to fully automated, AI-powered operations. Technologies like machine learning, deep learning, and reinforcement learning provide real-time analytics, traffic control, anomaly detection, and predictive insights, significantly boosting network performance, security, and reliability. Additionally, it delves into how this shift is altering the skill set required of network engineers, placing greater emphasis on expertise in AI, machine learning, and data analytics. The paper also examines how AI-driven frameworks, such as Software Defined Networking (SDN) and Network Function Virtualization (NFV), enhance network flexibility and scalability. Ultimately, it underscores the essential role of network engineers in integrating AI technologies to maintain the security, efficiency, and resilience of digital infrastructures, while highlighting the need for ongoing professional development to navigate the AI-driven landscape.
References
Abbasi, B. N., Wu, Y., & Luo, Z. (2025). Exploring the impact of artificial intelligence on curriculum development in global higher education institutions. Education and Information Technologies, 30(1), 547-581.
Adhikari, P. (2024). Exploring the Nexus between Artificial Intelligence and Job Displacement: A Literature Review. Journal of National Development, 37(1), 1-13.
Agarwal, N. How Artificial Intelligence is Employed in Business Managerial Decision.
Agarwal, S., Mangla, S. K., & Ramadani, V. (2024). Enlightening cases: Utilization of exemplary AI-enhanced research endeavors. In Utilizing AI Tools in Academic Research Writing (pp. 158-170). IGI Global.
Ahmad, I., Shahabuddin, S., Sauter, T., Harjula, E., Kumar, T., Meisel, M.,…Ylianttila, M. (2020). The challenges of artificial intelligence in wireless networks for the Internet of Things: Exploring opportunities for growth. IEEE Industrial Electronics Magazine, 15(1), 16-29.
Ahmad, S. S., & Habelamateen, M. I. (2023). Application of Artificial Intelligence and Machine Learning in Software Defined Networks. Journal of Smart Internet of Things, 1, 14-22.
Ahmed, S., Yong, J., & Shrestha, A. (2023). The integral role of intelligent IoT system, cloud computing, artificial intelligence, and 5G in the user-level self-monitoring of COVID-19. Electronics, 12(8), 1912.
Ajayi, A. M., Omokanye, A. O., Olowu, O., Adeleye, A. O., Omole, O. M., & Wada, I. U. (2024). Detecting insider threats in banking using AI-driven anomaly detection with a data science approach to cybersecurity.
AlAfnan, M. A., Dishari, S., & MohdZuki, S. F. (2024). Developing soft skills in the artificial intelligence era: Communication, business writing, and composition skills. Journal of Artificial Intelligence and Technology, 4(4), 305-317.
Alshahrani, A. (2023). Optimising IDS configurations for IoT networks using AI approaches University of Sheffield].
Argyroudis, S. A., Mitoulis, S. A., Chatzi, E., Baker, J. W., Brilakis, I., Gkoumas, K.,…Keou, O. (2022). Digital technologies can enhance climate resilience of critical infrastructure. Climate Risk Management, 35, 100387.
Arshad, K., Ali, R. F., Muneer, A., Aziz, I. A., Naseer, S., Khan, N. S., & Taib, S. M. (2022). Deep reinforcement learning for anomaly detection: A systematic review. IEEE Access, 10, 124017-124035.
Attkan, A., & Ranga, V. (2022). Cyber-physical security for IoT networks: a comprehensive review on traditional, blockchain and artificial intelligence based key-security. Complex & Intelligent Systems, 8(4), 3559-3591.
Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of economic perspectives, 29(3), 3-30.
Awaludin, M., Yasin, V., & Risyda, F. (2024). The Influence of Artificial Intelligence Technology, Infrastructure and Human Resource Competence on Internet Access Networks. Inform: Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 9(2), 111-120.
Bala, I., Mijwil, M. M., Ali, G., & Sadıkoğlu, E. (2023). Analysing the connection between AI and industry 4.0 from a cybersecurity perspective: Defending the smart revolution.
Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer networks, 167, 106984.
Belgaum, M. R., Alansari, Z., Musa, S., Alam, M. M., & Mazliham, M. (2021). Impact of artificial intelligence-enabled software-defined networks in infrastructure and operations: Trends and challenges. International Journal of Advanced Computer Science and Applications, 12(1).
Berretta, S., Tausch, A., Ontrup, G., Gilles, B., Peifer, C., & Kluge, A. (2023). Defining human-AI teaming the human-centered way: a scoping review and network analysis. Frontiers in Artificial Intelligence, 6, 1250725.
Billiot, T. (2023). Continuous learning and advancing technologies: a framework for professional development and training in artificial intelligence. Development and Learning in Organizations: An International Journal, 37(3), 28-31.
Boukerche, A., Tao, Y., & Sun, P. (2020). Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems. Computer networks, 182, 107484.
Bukartaite, R., & Hooper, D. (2023). Automation, artificial intelligence and future skills needs: an Irish perspective. European Journal of Training and Development, 47(10), 163-185.
Camilleri, A. F., & Tannhäuser, A.-C. (2013). Assessment and recognition of open learning. In Openness and Education (pp. 85-118). Emerald Group Publishing Limited.
Cantú-Ortiz, F. J., Galeano Sánchez, N., Garrido, L., Terashima-Marin, H., & Brena, R. F. (2020). An artificial intelligence educational strategy for the digital transformation. International Journal on Interactive Design and Manufacturing (IJIDeM), 14, 1195-1209.
Chakrabarti, A. S. (2016). Stochastic Lotka–Volterra equations: A model of lagged diffusion of technology in an interconnected world. Physica A: Statistical mechanics and its Applications, 442, 214-223.
Challita, U., Ryden, H., & Tullberg, H. J. I. C. M. (2020). When machine learning meets wireless cellular networks: Deployment, challenges, and applications. 58(6), 12-18.
Chao, P.-J., Hsu, T.-H., Liu, T.-P., & Cheng, Y.-H. (2021). Knowledge of and competence in artificial intelligence: Perspectives of Vietnamese digital-native students. IEEE Access, 9, 75751-75760.
Chavhan, S. J. S. E. T., & Assessments. (2022). Shift to 6G: Exploration on trends, vision, requirements, technologies, research, and standardization efforts. 54, 102666.
Chemouil, P., Hui, P., Kellerer, W., Li, Y., Stadler, R., Tao, D.,…Zhang, Y. (2019). Special issue on artificial intelligence and machine learning for networking and communications. IEEE Journal on Selected Areas in Communications, 37(6), 1185-1191.
Chen, J., Li, K., Deng, Q., Li, K., & Yu, P. S. J. I. T. o. I. I. (2019). Distributed deep learning model for intelligent video surveillance systems with edge computing.
Chen, M., Challita, U., Saad, W., Yin, C., Debbah, M. J. I. C. S., & Tutorials. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. 21(4), 3039-3071.
Cunha, J., Ferreira, P., Castro, E. M., Oliveira, P. C., Nicolau, M. J., Núñez, I.,…Serôdio, C. (2024). Enhancing Network Slicing Security: Machine Learning, Software-Defined Networking, and Network Functions Virtualization-Driven Strategies. Future Internet, 16(7), 226.
Dandamudi, S. R. P., Sajja, J., & Khanna, A. (2025). Advancing Cybersecurity and Data Networking Through Machine Learning-Driven Prediction Models. International Journal of Innovative Research in Computer Science and Technology, 13(1), 26-33.
Dao, N.-N. J. F. G. C. S. (2023). Internet of wearable things: Advancements and benefits from 6G technologies. 138, 172-184.
Das, D. K. (2024). Exploring the symbiotic relationship between digital transformation, infrastructure, service delivery, and governance for smart sustainable cities. Smart Cities, 7(2), 806-835.
Edwards-Fapohunda, M. O., & Adediji, M. A. (2024). Sustainable development of distance learning in continuing adult education: The impact of artificial intelligence. IRE Journals, 8(1), 113-114.
Eedara, G., Sindhuja, A., Reddy, Y. M., & Bhargav, R. Balancing Automation and Human Expertise: A Critical Examination of the Need for Human Intervention in the Automation Sector.
Ernst, E., Merola, R., & Samaan, D. (2019). Economics of artificial intelligence: Implications for the future of work. IZA Journal of Labor Policy, 9(1), 1-35.
Firouzi, F., Farahani, B., & Marinšek, A. J. I. S. (2022). The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT). 107, 101840.
Gürer, D. W., Khan, I., Ogier, R., & Keffer, R. (1996). An artificial intelligence approach to network fault management. Sri international, 86.
Hadzovic, S., Mrdovic, S., & Radonjic, M. (2023). A path towards an internet of things and artificial intelligence regulatory framework. IEEE Communications Magazine, 61(7), 90-96.
Hu, Y., Kuang, W., Qin, Z., Li, K., Zhang, J., Gao, Y.,…Li, K. (2021). Artificial intelligence security: Threats and countermeasures. ACM Computing Surveys (CSUR), 55(1), 1-36.
Huang, J. (2023). Digital engineering transformation with trustworthy AI towards industry 4.0: emerging paradigm shifts. Journal of Integrated Design and Process Science, 26(3-4), 267-290.
Ilyas, M. (2022). Emerging Role of Artificial Intelligence. Journal of Systemics, Cybernetics and Informatics, 20(6), 58-65.
Iqbal, S., Rizvi, S. W. A., Haider, M. H., & Raza, S. (2023). Artificial Intelligence in Security and Defense: Explore the integration of AI in military strategies, security policies, and its implications for global power dynamics. International Journal of Human and Society, 3(4), 341-353.
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business horizons, 61(4), 577-586.
Javaid, N., Sher, A., Nasir, H., & Guizani, N. (2018). Intelligence in IoT-based 5G networks: Opportunities and challenges. IEEE Communications Magazine, 56(10), 94-100.
Johnson, M., Jain, R., Brennan-Tonetta, P., Swartz, E., Silver, D., Paolini, J.,…Hill, C. (2021). Impact of big data and artificial intelligence on industry: developing a workforce roadmap for a data driven economy. Global Journal of Flexible Systems Management, 22(3), 197-217.
Karamchand, G. K. (2024). Networking 4.0: The Role of AI and Automation in Next-Gen Connectivity. Journal of Big Data and Smart Systems, 5(1).
Kashem, M. A., Shamsuddoha, M., Nasir, T., & Chowdhury, A. A. (2023). Supply chain disruption versus optimization: a review on artificial intelligence and blockchain. Knowledge, 3(1), 80-96.
Khan, A., Shad, F., Sethi, S., & Bibi, M. (2024). The Impact of Artificial Intelligence (AI) on Job Displacement and the Future Work. Social Science Review Archives, 2(2), 2296-2306.
Khawar, M. W., Salman, W., Shaheen, S., Shakil, A., Iftikhar, F., & Faisal, K. M. I. (2024). Investigating the most effective AI/ML-based strategies for predictive network maintenance to minimize downtime and enhance service reliability. Spectrum of Engineering Sciences, 2(4), 115-132.
Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access, 6, 32328-32338.
Korobenko, D., Nikiforova, A., & Sharma, R. (2024). Towards a privacy and security-aware framework for ethical AI: Guiding the development and assessment of AI systems. Proceedings of the 25th Annual International Conference on Digital Government Research,
Koski, O., & Husso, K. (2018). Work in the age of artificial intelligence: Four perspectives on the economy, employment, skills and ethics.
Krenn, M., Buffoni, L., Coutinho, B., Eppel, S., Foster, J. G., Gritsevskiy, A.,…Sanjabi, N. (2023). Forecasting the future of artificial intelligence with machine learning-based link prediction in an exponentially growing knowledge network. Nature Machine Intelligence, 5(11), 1326-1335.
La Sala, A., Fuller, R., Riolli, L., & Temperini, V. (2024). The rise of hybrids: plastic knowledge in human–AI interaction. Journal of Knowledge Management, 28(10), 3023-3045.
Lane, M., & Saint-Martin, A. (2021). The impact of Artificial Intelligence on the labour market: What do we know so far? OECD Social, Employment, and Migration Working Papers(256), 0_1-60.
LeCun, Y., Bengio, Y., & Hinton, G. J. n. (2015). Deep learning. 521(7553), 436-444.
Lu, Y., & Zheng, X. J. J. o. I. I. I. (2020). 6G: A survey on technologies, scenarios, challenges, and the related issues. 19, 100158.
Malik, N., Tripathi, S. N., Kar, A. K., & Gupta, S. (2021). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 43(2), 334-354.
Man, J. (2022). Towards the Future of Work: Managing the Risks of AI and Automation Massachusetts Institute of Technology].
Marquardson, J. (2024). Embracing Artificial Intelligence to Improve Self-Directed Learning: A Cybersecurity Classroom Study. Information Systems Education Journal, 22(1), 4-13.
Meena, P., Pal, M. B., Jain, P. K., & Pamula, R. J. W. P. C. (2022). 6G communication networks: introduction, vision, challenges, and future directions. 125(2), 1097-1123.
Mishra, A. K., Ravinder Reddy, R., Tyagi, A. K., & Arowolo, M. O. (2024). Artificial intelligence-enabled edge computing: Necessity of next generation future computing system. In IoT Edge Intelligence (pp. 67-109). Springer.
Mistry, H. K., Mavani, C., Goswami, A., & Patel, R. (2024). Artificial intelligence for networking. Educational Administration: Theory and Practice, 30(7), 813-821.
Mithas, S., Chen, Z. L., Saldanha, T. J., & De Oliveira Silveira, A. (2022). How will artificial intelligence and Industry 4.0 emerging technologies transform operations management? Production and Operations Management, 31(12), 4475-4487.
Mohamed, M. G., Ahmed Ibrahim, O., Hamed, H. F., & Abdelnaby, S. F. (2024). Engineering's Next Leap: How Fourth Industrial Revolution is Shaping the Future of the Industry. ERU Research Journal, 1-21.
Moro-Visconti, R. (2024). Natural and Artificial Intelligence Interactions in Digital Networking: A Multilayer Network Model for Economic Value Creation. Journal of Comprehensive Business Administration Research.
Mossavar-Rahmani, F., & Zohuri, B. (2024). Artificial intelligence at work: Transforming industries and redefining the workforce landscape. Journal of Economics & Management Research. SRC/JESMR-284. J Econ Managem Res, 5(2), 2-4.
Musaddiq, A., Ali, R., Bajracharya, R., Qadri, Y. A., Al-Turjman, F., & Kim, S. W. (2020). Trends, issues, and challenges in the domain of IoT-based vehicular cloud network. Unmanned Aerial Vehicles in Smart Cities, 49-64.
Mutawa, A. M. (2023). Perspective chapter: MOOCS at higher education–Current state and future trends. Massive Open Online Courses-Current Practice and Future Trends.
Oladosu, S. A., Ike, C. C., Adepoju, P. A., Afolabi, A. I., Ige, A. B., & Amoo, O. O. (2021). The future of SD-WAN: A conceptual evolution from traditional WAN to autonomous, self-healing network systems. Magna Scientia Advanced Research and Reviews.
Ota, K., Dao, M. S., Mezaris, V., Natale, F. G. D. J. A. T. o. M. C., Communications,, & Applications. (2017). Deep learning for mobile multimedia: A survey. 13(3s), 1-22.
Patil, D. (2024). Artificial Intelligence-Driven Predictive Maintenance In Manufacturing: Enhancing Operational Efficiency, Minimizing Downtime, And Optimizing Resource Utilization. Minimizing Downtime, And Optimizing Resource Utilization (December 11, 2024).
Puaschunder, J. M. (2019). Artificial intelligence in the healthcare sector. Scientia Moralitas-International Journal of Multidisciplinary Research, 4(2), 1-14.
Raihan, A. J. R. B. o. I., & Evolution, C. T. (2023). An overview of the implications of artificial intelligence (AI) in sixth generation (6G) communication network. 9, 120-146.
Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence for enhancing resilience. Journal of Applied Artificial Intelligence, 5(2), 1-33.
Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information, 11(4), 193.
Reddy, A. R. P. (2021). The role of artificial intelligence in proactive cyber threat detection in cloud environments. NeuroQuantology, 19(12), 764-773.
Saadallah, M., Shahim, A., & Khapova, S. (2024). Synergizing Human Expertise, Automation, and Artificial Intelligence for Vulnerability Management. PriMera Sci. Eng, 5, 2-13.
Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J.,…Papavassiliou, S. (2021). Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions. Computer networks, 195, 108177.
Sakshi, T. M., Tyagi, P., & Jain, V. (2024). Emerging trends in hybrid information systems modeling in artificial intelligence. Hybrid Information Systems: Non-Linear Optimization Strategies with Artificial Intelligence, 115.
Saurabh, K., Sharma, V., Singh, U., Khondoker, R., Vyas, R., & Vyas, O. (2025). Hms-ids: Threat intelligence integration for zero-day exploits and advanced persistent threats in iiot. Arabian Journal for Science and Engineering, 50(2), 1307-1327.
Shah, H., & Patel, J. (2024). Adaptive AI Architectures: Integrating Machine Learning and Self-Healing Capabilities. International bulletin of History and Social Science, 1(4), 63-76.
Sharma, S., & Nag, A. (2023). Cognitive software defined networking and network function virtualization and applications. In (Vol. 15, pp. 78): MDPI.
Shen, Y., Zhang, X. J. H., & Communications, S. S. (2024). The impact of artificial intelligence on employment: the role of virtual agglomeration. 11(1).
Sowa, K., Przegalinska, A., & Ciechanowski, L. (2021). Cobots in knowledge work: Human–AI collaboration in managerial professions. Journal of Business Research, 125, 135-142.
Spector, J. M., & Ma, S. (2019). Inquiry and critical thinking skills for the next generation: from artificial intelligence back to human intelligence. Smart Learning Environments, 6(1), 1-11.
Srikanth, B. (2020). The Role of Network Engineers in Securing Cloud-based Applications and Data Storage.
Strannegård, C., Engsner, N., Ferrari, P., Glimmerfors, H., Södergren, M. H., Karlsson, T.,…Skoglund, V. (2021). The ecosystem path to general AI. arXiv preprint arXiv:2108.07578.
Sun, W., & Gao, X. (2018). The construction of undergraduate machine learning course in the artificial intelligence era. 2018 13th International Conference on Computer Science & Education (ICCSE),
Tariq, M. U., Poulin, M., & Abonamah, A. A. (2021). Achieving operational excellence through artificial intelligence: Driving forces and barriers. Frontiers in psychology, 12, 686624.
Thakur, S., Sandhu, S., & Yehuwalashet, F. (2024). E-Commerce and Trade: The Role of Artificial Intelligence. In Handbook of Artificial Intelligence Applications for Industrial Sustainability (pp. 232-248). CRC Press.
Tschang, F. T., & Almirall, E. (2021). Artificial intelligence as augmenting automation: Implications for employment. Academy of Management Perspectives, 35(4), 642-659.
van Noordt, C., Medaglia, R., & Tangi, L. (2023). Policy initiatives for Artificial Intelligence-enabled government: An analysis of national strategies in Europe. Public Policy and Administration, 09520767231198411.
Verma, A., Lamsal, K., & Verma, P. (2022). An investigation of skill requirements in artificial intelligence and machine learning job advertisements. Industry and Higher Education, 36(1), 63-73.
Wang, D., Churchill, E., Maes, P., Fan, X., Shneiderman, B., Shi, Y., & Wang, Q. (2020). From human-human collaboration to Human-AI collaboration: Designing AI systems that can work together with people. Extended abstracts of the 2020 CHI conference on human factors in computing systems,
Wang, W., & Siau, K. (2019). Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: A review and research agenda. Journal of Database Management (JDM), 30(1), 61-79.
Wang, X., Li, X., & Leung, V. C. (2015). Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access, 3, 1379-1391.
Waqar, M., Bhatti, I., & Khan, A. H. (2024). AI-powered automation: Revolutionizing industrial processes and enhancing operational efficiency. Revista de Inteligencia Artificial en Medicina, 15(1), 1151-1175.
Waqas, M., Tu, S., Halim, Z., Rehman, S. U., Abbas, G., & Abbas, Z. H. (2022). The role of artificial intelligence and machine learning in wireless networks security: Principle, practice and challenges. Artificial Intelligence Review, 55(7), 5215-5261.
Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial intelligence. MIT press.
Yang, Y., Yu, L., Bai, Y., Wang, J., Zhang, W., Wen, Y., & Yu, Y. (2017). A study of ai population dynamics with million-agent reinforcement learning. arXiv preprint arXiv:1709.04511.
Yang, Y., Zhuang, Y., & Pan, Y. (2021). Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Frontiers of Information Technology & Electronic Engineering, 22(12), 1551-1558.
Yerlikaya, S., & Erzurumlu, Y. Ö. (2021). Artificial intelligence in public sector: a framework to address opportunities and challenges. The fourth industrial revolution: Implementation of artificial intelligence for growing business success, 201-216.
Young, T., Hazarika, D., Poria, S., & Cambria, E. J. i. C. i. m. (2018). Recent trends in deep learning based natural language processing. 13(3), 55-75.
Zeng, J. (2020). Artificial intelligence and China's authoritarian governance. International Affairs, 96(6), 1441-1459.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 oghenemarho KARIENREN, Roqeeb OLANIYI , Hassan OLUGBILE, Olisa OKWUOBI

This work is licensed under a Creative Commons Attribution 4.0 International License.